If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+42x+9=0
a = 2; b = 42; c = +9;
Δ = b2-4ac
Δ = 422-4·2·9
Δ = 1692
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1692}=\sqrt{36*47}=\sqrt{36}*\sqrt{47}=6\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{47}}{2*2}=\frac{-42-6\sqrt{47}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{47}}{2*2}=\frac{-42+6\sqrt{47}}{4} $
| 2x+42x+9=0 | | (2b²-5b+4=3b²-4b-8) | | +3(x+1)=13 | | 2(x-2)+4x=12 | | 4x-3=6×+4 | | x^2-5+8=0 | | 15x+3=3x-15 | | 8s-7=9 | | 8l-3=29 | | 7s+5=68 | | 7e+10=45 | | 5e+12=17 | | 7v+2=23 | | y^2+5y-35=0 | | 3×(2m-5)=12 | | 24-3h+14=-7 | | 3-2d=17 | | 3-2d=117 | | 3-x15=24 | | 3+x+15=24 | | x×21=5x+21 | | 3x-12=9+8x | | (1/5)^x-4=1/125 | | (1/5)^x-x=1/125 | | 50+50-25x0+2=2 | | 50+50+25*0+2+2=x | | 3^2x-2.3^x=3 | | 2^x÷3+2^x÷2+1=24 | | 2^y+3+2^y=9 | | 9^(2x-4)=81^(×+3) | | y=400+120 | | 20n-18=42 |